API 5CT L80 13cr Seamless Steel Tube Pipe Casing Tubing Coupling Joint Oil Well Pipe Tubing Casing
overview of API 5ct L80 13Cr seamless steel Tube API 5CT L80 13Cr Seamless Steel Tube is a type of…
overview of API 5ct L80 13Cr seamless steel Tube
API 5CT L80 13Cr Seamless Steel Tube is a type of Pipe used in the oil and gas industry for various applications. It is known for its high strength and corrosion resistance, making it suitable for use in harsh environments. In this article, we will provide an overview of API 5CT L80 13Cr Seamless Steel Tube, discussing its composition, properties, and applications. API 5CT L80 13Cr Seamless Steel Tube is made from a low carbon steel alloy that contains chromium and molybdenum. The addition of these elements enhances the tube’s strength and resistance to corrosion. The 13Cr in the name refers to the 13% chromium content in the alloy, which provides excellent resistance to corrosion in acidic environments. OilOne of the key properties of API 5CT L80 13Cr Seamless Steel Tube is its high tensile strength. This means that it can withstand high pressure and stress without deforming or breaking. This makes it ideal for use in oil and gas wells, where the Tubing is subjected to extreme conditions.Labels a | Calculated Mass c | ||||||||||
Nominal linear Mass T& C b,c | wall Thick- ness | em, Mass Gain or Loss Due to End finishing d | |||||||||
Outside diameter | Inside Diameter | Drift Diameter | Plain- end | kg | |||||||
Round Thread | Buttress Thread | ||||||||||
wpe | |||||||||||
D | kg/m | t | D | mm | kg/m | Short | Long | RC | SCC | ||
mm | mm | mm | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 3/8 | 48 | 339.72 | 71.43 | 8.38 | 322.96 | 318.99 | 68.48 | 15.04 | — | — 17.91 | — |
13 3/8 | 54.5 | 339.72 | 81.1 | 9.65 | 320.42 | 316.45 | 78.55 | 13.88 | — | 16.44 | — |
13 3/8 | 61 | 339.72 | 90.78 | 10.92 | 317.88 | 313.91 | 88.55 | 12.74 | — | 14.97 | — |
13 3/8 | 68 | 339.72 | 101.19 | 12.19 | 315.34 | 311.37 | 98.46 | 11.61 | — | 14.97 | — |
13 3/8 | 68 | 339.72 | 101.19 | 12.19 | 315.34 | 311.37 | 98.46 | 11.67 f | — | 14.33 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 311.15 e | 105.21 | 10.98 | — | 13.98 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 311.15 e 309.63 309.63 | 105.21 | 10.91 f | — | 14.33 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 105.21 | 10.98 | — | 13.98 | — | |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 105.21 | 10.91 e | — | — | ||
16 | 65 | 406.4 | 96.73 | 9.53 | 387.4 | 382.57 | 96.73 | 18.59 | — | — 20.13 | — |
16 | 75 | 406.4 | 111.61 | 11.13 | 384.1 | 379.37 | 108.49 | 16.66 | — | 18.11 | — |
16 | 84 | 406.4 | 125.01 | 12.57 | 381.3 | 376.48 | 122.09 | 14.92 | — | — | — |
16 | 109 | 406.4 | 162.21 | 16.66 | 373.1 | 368.3 | 160.13 | — | — | — | |
18 5/8 | 87.5 | 473.08 | 130.21 | 11.05 | 450.98 | 446.22 | 125.91 | 33.6 | — | 39.25 | — |
20 | 94 | 508 | 139.89 | 11.13 | 485.7 | 480.97 | 136.38 | 20.5 | 27.11 | 24.78 | — |
20 | 94 | 508 | 139.89 | 11.13 | 485.7 | 480.97 | 136.38 | 20.61 | 27.26 g 24.27 17.84 | 24.78 | — |
20 | 106.5 | 508 | 158.49 | 12.7 | 482.6 | 477.82 | 155.13 | 18.22 | 22 | — | |
20 | 133 | 508 | 197.93 | 16.13 | 475.7 | 470.97 | 195.66 | 13.03 | 16.02 | — | |
NOTE See also Figures D.1, D.2, and D.3. | |||||||||||
a Labels are for information and assistance in ordering. | |||||||||||
b Nominal linear masses, threaded and coupled (Column 4) are shown for information only. | |||||||||||
c The densities of martensitic chromium steels (L80 types 9Cr and 13Cr) are less than those of carbon steels; The masses shown are therefore not accurate for martensitic chromium steels; A mass correction factor of 0.989 shall be used. | |||||||||||
d Mass gain or loss due to end finishing; See 8.5. | |||||||||||
e Drift diameter for most common bit size; This drift diameter shall be specified in the purchase agreement and marked on the pipe; See 8.10 for drift requirements. | |||||||||||
f based on 758 mPa minimum yield strength or greater. | |||||||||||
g Based on 379 mPa minimum yield strength. |